ideaForge” ”
Create. Inspire

idealorge

Position and Altitude Control of
Quadrotor with Single Motor Failure

01

Introduction

Problem Understanding

Quadrotors are extensively used for applications in aerial [—1

(]
surveillance, mapping, surveying, aerial photography, search and (ﬂ.’ —ﬁ—
rescue, agriculture, logistics delivery, and other domains due to P:: rrr

their structural simplicity, easy deployability, and capability to hover
and manoeuvre in confined spaces. Unlike fixed-wing drones,
quadrotors can perform vertical take-offs and landings, making
them ideal for operations in cluttered or inaccessible environments.

Their ability to remain stationary mid-air and navigate through tight areas has made them indispensable for
critical missions such as disaster relief, military reconnaissance, and infrastructure inspection. Furthermore,
advances in lightweight materials, battery technology, and compact sensors have significantly enhanced
their versatility and operational range.

However, the increasing reliance on quadrotors for high-stakes applications
exposes them to risks inherent in their operating environments. Propeller damage
or motor failure is a common issue due to collisions with obstacles, wear and
tear, or adverse weather conditions. Such failures pose serious challenges, as
the loss of even one motor disrupts the vehicle’s thrust symmetry and stability,
making it difficult to maintain hormal operation.

In disaster relief, for example, a failed quadrotor could lead to delays in delivering medical supplies or
assessing damage, potentially endangering lives. In military applications, the failure of a quadrotor during a
reconnaissance mission in hostile territory could result in technology exfiltration or loss of sensitive
intelligence. To mitigate these risks, there is a pressing need for robust fault-tolerant control (FTC) systems
that can detect, isolate, and respond to failures in real-time, ensuring the quadrotor can continue its mission
or safely return home.

4)
After motor failure, the remaining three working rotors may insufficiently compensate

c for the drone's weight and consequently result in hon-zero moments.
J
H
e o)
A The yaw & the torque about one of the arms of the drone, would initially be large and
L uncontrolled.The designed control algorithm should be equipped to handle scenarios.
L J
e N
ﬁ Lack of feedback sensors limits fault detection speed and accuracy due to baud rates
G and noise levels, which may cause false positives.
J
E e . . . " .)
s Even after accurate fault detection and isolation, the modified control algorithm would
not have the luxury of accessing all maneuvers present previously with no yaw control.
\. J

For the mid-evaluation, we explored previous approaches to address these issues, including Fault Detection
and Isolation using accelerometer data, a PD-based controller for emergency landing after motor failure, and
a LQR controller for stable hovering. These methods provided initial solutions but revealed limitations in
handling more complex failure scenarios, particularly in terms of stability and maneuverability. As a result, a
unified controller was developed to efficiently handle both tasks, offering better fault tolerance, adaptability,
and stability across various failure conditions, ensuring more robust performance in real-world situations.

For the current report, we have explored better solution as well as tried to improve upon the existing
solutions. Our final solution is able to navigate and land with a single motor failure. On top of that we have
tried to make our controller uniform as well as demonstrate its effectiveness for more than 1 rotor failure.

Introduction \ Building up \ Final Solution \ System Setup \ Results \ Conclusion

02

The following section contains a brief review of previously used approaches mentioned in our mid-evaluation
report, which provide useful insights into our direction of thought towards the solution of the problem

statement.

Fault Detection and Isolation (FDI) using Accelerometer

This fault detection approach identifies
motor failures by analyzing linear
acceleration changes (AA, and AA,) over a
three-sample window. A sudden change
exceeding a threshold marks the fault's
timestamp. This method proved to be
effective in simple scenarios of hover but
failed during extreme maneuvers which
caused false positives.

Landing Using PD Controller

A simple PD-based controller was used for
emergency landing after motor failure, shutting
off the opposite propeller to simplify dynamics
and focus on thrust and pitch for stable attitude
control. However, the controller was too simple
and struggled with highly nonlinear scenarios[3].

T

)

Hover using Linear Quadratic Regulator (LQR)

An LQR-based controller was used %d Ya Zd

for hovering: an outer loop for l
desired attitudes and an inner loop
ensuring attitude tracking for

Ty z

Z — Outer Controller

isiti Accel_x
Data Acquisition _ AAX AAy
Accel
!) -
! >Threshold
i False
True
{ ! 1 1
AAX>0 AA <0 AAX>0 AAX<0
AA >0 AA <0 AA <0 AA >0
y y y y
1) ¢ i 1
Motor 1 Motor 2 Motor 3 Motor 4
Fig.1 Diagram for motor failure detector
PID Thrust and 1 Propeller: Birotor
Position Pitch PID input ficce]
Controller reference Pitch
Controller|
Fig.2 Control Diagram for PD landing controller
v Ty z o0 pqr
[slow dynamics 1 fast dynamics]
r U Tp Tq T D!
$a_bq 14 Z —+ Inner Controller % o .’a

|¢9r

throttle inputs. This approach was

Fig.3 Control Diagram for Hover using LQR
tuning-intensive and heavily dependent on system parameters [4].

system stability under dynamic conditions.

and critical operations.

" e e

Ultimately, the approaches that were presented during mid-evaluation were replaced with a better fault
detection algorithm and a unified controller handling both tasks due to the following reasons:

The approaches struggled with nonlinear scenarios & extreme maneuvers, leading to compromised

The simplistic designs lacked the robusthess needed for unpredictable environments, limiting their
ability to perform reliably in real-world applications.

Excessive reliance on precise system parameters and complex tuning revealed inefficiencies,
underscoring the need for a more unified and practical solution.

High false-positive rates in fault detection diminished system reliability, particularly during complex

[—— 4

Introduction \ Building up \ Final Solution\ System Setup \ Results \ Conclusion

03

Building Up

Feedback Linearization

slow dynamics fast dynamics

Td, Yd

¢,0,0,p,q,7,2

Fig.4 Control Diagram for Feedback Linearization

Feedback linearization linearizes nonlinear dynamics by using control inputs to cancel out nonlinearities,
enabling linear control laws for complex systems. A reduced state space excluding yaw and yaw rates
simplifies the dynamics. The inner loop handles high-frequency rotational dynamics (roll, pitch) via motor
inputs, while the outer loop manages slower positional adjustments to control the quadrotor's trajectory.

Desired waypoints for landing and hovering are provided directly. For distant targets, waypoints are
specified in 10-meter increments along the x and y axes, with the z-axis handled separately. The decoupled
approach allows the quadrotor to first reach the x and y coordinates before adjusting altitude, simplifying

control and enhancing stability during trajectory tracking [2].
é1 e Z14
ég + Ci2n €| — C.[:'gd
€9 €9 Zoq

[xld] m lswg —ng} |:_ﬁ3710 + 2€,Coe10 + Coe7 — ilOd]

— g :
T2d Crs Ses | [—2T11 + 285C0e11 + Coe8 — 114

-~ %

] = — (J(@)n(@)"" J(2)f(2) — (J(@)h(z)) " (2&-”%

;]* Q\]* <

SE[3Te)

INDI
(Dynamics]

Incremental Nonlinear Dynamic Inversion (INDI) approximates S
quadrotor attitude control post-failure by linearizing dynamics. =1, (@6 — € x (1S%)]
The controller consists of four modules which are as follows: [7] VKb _ in + M, [0 0 g}T — O X Vi
g
m

. Position Controller : Computes virtual acceleration /g from
position, velocity, and acceleration errors to determine desired thrust direction 174 for trajectory correction.

. Outer Loop : Computes total thrust 1,7 based on the desired thrust direction, which is low-pass filtered.
. Inner Loop : Aligns 14 using dynamics and a pseudo-control input combining NDI and feedback gains.
. Control Allocator : Maps virtual inputs to rotor throttles via the Weighted Least Squares (WLS) method.

(Inner)

@LLE
[vy & G+ (@1 4k G’g)Au — Gyz 'Au]

(Inner)

(v, ~ 9) J—

Vs — " . ..

[Mdndi ‘= ﬁ Vap = [larny + (vs = 8f)l| with ar =ng- (57 —g) j
S

Fig.5 Control Diagram for INDI

04
Final Solution

Apparent Force Divergence Fault Detection

Irrespective of the states of the drone prior to the fault, the drastic { =)
reduction in thrust of the faulty motor, can be equivalently s
represented by an external force applied on the faulty motor, equal
and opposite to its thrust. To oppose this apparent force on the
motor, the controller would try to increase the thrust of the faulty
motor and decrease the thrust of the other three motors. This
behavior can be exploited for fault detection & identification. ~

Fig. 6 Fault in Motor 3 seen by the Controller

«—— Computational Latency —m8 ———»

Fault Injection Condition 1 Trigger Condition 2 Trigger
(Fault Detection)

Total Latency

To summarize, two behaviours of the drone system at the time of motor failure has been exploited here:
. Control signals to the faulty motor rise sharply, while signals to the others drop significantly
. The anomaly in the control signals progressively compounds and intensifies over time

To observe the first behaviour, we consider the control signals

given to each actuator relative to another. Consider ui to be the mip Mz M3 M4
control signal given to the it" motor (i=1,2,3,4), then the rowsum of Mo1 Mo M2z M4
the i row of the matrix mentioned on the right, R; , will give us the ms31 132 133 M3y
sum of the differences in the control signals of all other motors with Myl Miya Mgz My

respect to the ;**motor.
, , , - where m;; = u; — u;
The quantity R; is representative of the variability of the other

motors with respect to the ;' motor. This quantity increases rapidly R — Z
=
for the faulty motor and decreases to negative values for the
remaining motors. This gives us an estimate of the motor fault. AR; = Ri(t) — Ri(t — 1)

Thus, condition A is checked to detect the motor fault.

However, considering and comparing only this quantity poses a few challenges. False positives may arise
in case of a slight imbalance in the centre of mass of the drone for motor fault detection on hardware.
However sensor noise and extreme maneuvers may also produce false positives.

To solve this issue, we must consider the change

in R; with time (between consecutive timestamps)
R; In case of a true motor failure event, it is observed
that R; spikes just before condition A is satisfied.

Condition A: Ri > RThreshold and Rj < O, Vj 7é 7

Condition B: ARZ > ARThreshold and AR] < 07 VJ 7é 1

Hence, condition B can be checked at first, giving us an
where £ - moving average window indication of a potential fault, and condition A can be

checked within a few timestamps after condition B is
A<R¢>(t) = (R;)(t) — (R)(t — 1) met, confirming the initial suspicion and eliminating
false positives to a substantial extent.

k—

-

=0

X Noise can still interfere with this algorithm and produce
undesired results. To eliminate noise, the moving
averages of [? and R, are considered instead of the
instantaneous values.

Introduction \ Building up \ Final Solution \ System Setup \ Results \ Conclusion

05

Multi Rotor Fault Tolerant Controller

Building on insights from previous approaches, the control system for the final approach comprises three
parts: Disturbance estimator, desired virtual control generation, and commanded virtual control feedback
loop. In the FTC case, the system is modelled with loss of control over r, and the passive controller treats
motor failure(s) as a lumped disturbance.[6]

The fault-free system model is as described below, with control inputs consisting of the net force and
torques about the body-frame X, y, and z axes. The primary axis, 13, is defined as the direction of the body-
frame z-axis projected in the inertial frame, expressed as R,,[0,0,1]. Here, J represents the inertia matrix of
the body about its center of mass (COM).

P v 0 0
-1
Vi Z g s 0 1S
n; —n3 X Ryw 0 0 T
w J ! (~w x Jw) 0o J!
Vg N\
Position Controller .3 "3y Udz Desired Virtual Ud + + R 1 1 Yc , control Allocation
Control " rotor
+ _ es+1
LPF
Ipa v Il/z, R, w ’
¢ T
Local Position Estimator + | V,,w Disturbance MT
i
]

] i 3
| [
IMU + GPS | ——]
i Quaternion Estimator i * | Estimsied j
\ B /
[\ L

Fig.7 Control Diagram for MRFTC

The desired waypoints for landing and hovering are given directly. For distant targets, waypoints are
specified in 10-meter increments along the x and y directions, with the z-axis considered separately. X-Y and
Z traversals are decoupled: the quadrotor first reaches the target x and y coordinates, then adjusts altitude
to the desired z position. This decoupling simplifies control and enhances stability during trajectory tracking.

(Virtual Control and Thrust)

The above defines the relation between the virtual

control u and the thrusts T. The angles 1); are 1 1 1 1

defined as the angles between the body x axis and ~ u— | [snWi —lsin¥s =hsinWy —lpsin Vol 4
. . lycosVy; lycosWs ljcosWy lycosVsy

each rotor. A = diag(\;, \,, A3, \,) is the rotor health c e c e

matrix; efficiency coefficient \; [0, 1]; A\ = 0 Yo

indicates that thei'" rotor is completely faulty,)\i =1 i

represents that the ;" rotor is fault-free. We then write d=M(I,-A)T uc= ﬁ [ug — MT +d]

the virtual control in the following form.

We calculate the control command U in a feedback loop with the desired thrust T, followed by defining the
control loops. The outer position controller uses a PD-approach to determine the desired primary axis and
velocity in the z-direction.

Then based on the fault-tolerant model, we define the (estimated) disturbance as well as the control:

The disturbance is modelled as followed, from the above dynamics, and its estimate is taken by adding a
low pass filter to it. The purpose of the low pass filter is to reduce the effect of noise in the calculated

outputs.

Introduction \ Building up \ Final Solution \ System Setup \ Results \ Conclusion

06

(Outer Loop) C Inner Loop)

& Xird ! A4 — & .1'71 = Al.Z’Q
ngg =]l = ; .
13,2,d Had - g” Dynamics Ty = Agxs + Dy + Bouy
(e ElMT = d1
u, ul| <a
sat(u,a) =9, ull < . B . -
[l >a X] =X1] —X14, X2=X2—X24,

o = s34(K (va = ¥),) s B3 (3~ Aot s~ (AT) 3+ Go)

T
Va = [’Uw,d vad ’Uz,d} = kp(pd - p) d1 =EMT — B2_1 (X2 — A2X2 — Dg)

Finally the command control value, which is in feedback with the desired/current thrusts is defined by the
following relation.

The final equation uses a Moore-Penrose inverse, since F; M is not a square matrix, and it is the only
available control we have, as 1, ; does not have calculated T,..

@niform Passive Controa [Multi rotor failure)
This method passively generates control commands for a This method is designed to generate
drone, eliminating the need for a dedicated motor failure passive control commands for a drone
detection system. Since the disturbance is estimated with a total mass of 1.3 kg. It ensures
directly within the rotor health matrix, and the fault-tolerant stability and operational control even in
controller accounts for the full rotor dynamics, there is no the event of up to two simultaneous
need for an explicit switch to a separate controller during motor failures. These failures can occur
a fault. Instead, the controller operates seamlessly as a on opposite motors, highlighting the
unified system under all conditions. system's robust design.
(Metrics)
A C ng, C A 0 0 0
Reb A B D N3y 2 [nl ns n3] Al = [8]:C) B] A2 =10 0 —JZJ;L,JIT
E F ns . o 0 _%/’a 0
Yy
R o 0 0
1
B2 = 0 T 0 D2 =10 G3 = |f) G] 9 G = —n37zkn312
0 0 Ji 0
Y
0 0 ky. 0 0 . 0 0
K=k, |-B A, Ke=|0 k, 0|, K=k, |-B A where d; = E1d,E, = [13 03x1],cmd
-D C 0 0 k, -D C

Introduction \ Building up \ Final Solution \ System Setup \ Results \ Conclusion

07
System Setup

Hardware Setup

The S500 drone was chosen for its alignment with IRIS drone specifications, affordability, availability, and
easy access to components. Here's why it was ideal for our study:

. Alighment with IRIS Specifications: The S500 closely matches the IRIS drone in size and weight,
ensuring simulation results apply effectively to real-world implementation.

. Flight Controller Compatibility: Equipped with the Pixhawk 6C, the S500 ensures industry-standard
reliability for both simulation and deployment.

. Cost Considerations: The S500 offers a balanced, cost-effective option, combining affordability with
robust features and capabilities.

. Ease of Availability: The S500 is readily available, with strong technical support and spare parts
access, ensuring smooth operation during the competition.

Parameters Challenge Solution
Multiple Batteries Battery shortages delayed test flights Multiple batteries purchased
Proper Testing Rig 6 DOF Rig Testing Setup developed using ropes for testing
Open Testing Space A wide area required Setup built outdoors
Crash Protection Cushioning and Net Required Mattresses and Net used

1. Setup for Yawing Motion
. To test yaw stability, a BLDC motor was used for free rotation around the attachment point between the
rope and the drone. This setup allowed for controlled yaw motion during testing.
2. Setup for Fault Injection
. A relay switch was placed between the motor and the ESC, controlled via the transmitter. This allowed
for fault injection at desired intervals, simulating real-world failures during flight.
3. Testing Rig Setup
. A 15x20 ft bamboo pole structure was constructed to create a sturdy testing frame. This setup provided
a stable platform for testing the drone under controlled conditions with ample space to test fault control.

Software Setup

We work with PX4-Autopilot v1.15.1 on an Ubuntu 20.04 platform, customizing simulation & control modules:
1.Simulation Environment:
. Built sitl_gazebo-classic for access to Gazebo plugins, models, and worlds.
. Modified motor failure and motor model plugins to enable failure injections.
2.Custom Messaging:
. Developed new message files for motor failure detection & waypoint transmission to a custom controller.
3. Module and Configuration Enhancements:
. Added new modules: motor_failure_detector and a modified control_allocator.
. Updated flight_mode_manager to work with the custom changes.
. Modified board configuration files and startup scripts ensure proper startup of motor_failure_detector.
4.Web Interface:
. Developed a real-time console for monitoring telemetry data and sending navigation commands to the
running PX4 instance via the MAVLink protocol.

Introduction \ Building up \Final Solution \ System Setup \ Results \ Conclusion

08

Results

Fault Detection

(Latency]

Density Plot of Latency of Different Motors Density Plot of Different Latencies
0.251 ~ Latency of motor 1 0081 - Latency
- Latency of motor 2 - Computational Latency
- Latency of motor 3 0077 - Residual Latency
0.20 A - Latency of motor 4
0.06
0.15 A 0.05 4
))
a 2 0.04 -
a a
0.10 A 0.034
0.02 4
0.05 A
0.01 A
0.00 f T T T T T T T 0.00 T u T T
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140
Value Value
Density Plot of Computational Latency in Different Conditions Density Plot of Latency in Different Conditions
0.200 A ~—— Comp. Lat. hover
—— Comp. Lat. maneuver 0.200 4 — Latency hover
e ::::h —— Latency maneuver
0.175 1 —— Comp. Lat. yaw 0.175 4 — Latency roll
—— Comp. Lat. throttle_up " -
—— Comp. Lat. throttle_down —— Latency pitch
0.150 A —— Comp. Lat. takeoff 0.150 4 — Latency yaw
~—— Latency throttle up
0.125 A 0.125 - —— Latency throttle down
2 2z - Latency takeoff
§ 0.100 § 0.100 -
0.075 A 0.075 A
0.050 - 0.050 4
0.025 A 0.025 4
0.000 0.000 - T T y
0 50 100 150
Value
each conditions leading to total of 160 tests;
Hover 54.204 10.895 plotted motor specific and condition specific
latency plots
Maneuver 53.196 14.345 . In hover, maneuver, and throttle-down conditions,
detection latency is consistent and relatively low
Roll 70.211 0.056 cy . y
because there is a gradual change in states
Pitch 60.358 0.480 . In conditions like roll and yaw, motors experience
significant residual latencies due to rapid
Yaw 70.111 0.069 angular movements
. Throttle up and takeoff operations represent
Throttle Up 55.408 1315 te up _operat preser
transitional phases, introducing dynamic
Throttle Down 54.256 11.406 variability that is harder to model
. However, there is relatively less latency between
Take Off 52.219 5.299 flagl and flag2 for yaw because the rapidly
changing states help trigger the flag2 faster

Landing

09

I'/ Z velocity vs. Ti Tilt angle vs. Timestamp 3
. N .
/ _______ ‘:aull Induced T T T ;:‘uk Induced
BT | mm——— :lmu:en Stabilized g . — Altitude Stabilized
g wd] o T I o o Tooon
E * * :l?nestamp (s) “ “ “ * * T‘:nestamp (s) “ “ “©
E Lateral_deviation vs. Til of Quan Quan
Touch down speed = 1.32 m/s (9 cm
o drop above ground)
N Touch down tilt = 5 degrees
i Attitude stabilization = 1.3 s
i Lateral deviation = 1.5m
i s * * = 1’|mes(arr\i?(5)24 * *
:/ Tilt angle vs. Timestamp |
H Z velocity vs. 175
E 08 15.0
g § 10.0
5 ’_E" 75
MU 0.2 5.0 it
S| 0 T ;Zault Induced asf——————————{ : ;\al::dlld;::hzed
% o Jrra— Touch-down Velocity - Touch Down
8 " . N N ﬂmes‘?’“p © N N i ” " 20 25 30 35 :: 45 50 55 _so
Timestamp (s)
[-T-i Lateral_deviation vs. of Feedback Linearisation
S R SR
L — Touch down speed = 0.4 m/s (1 cm drop
__/ / above ground)
Touch down tilt = 6 degrees
i / Attitude stabilization =7 s
—/ Lateral deviation=4 m
15 20 25 30 nmes(,:‘i © 40 a5 50 55

10

i’ Tilt angle vs. Ti Z velocity vs. Timestamp
i Y EE %&g}sa:;nzed ; 0 = ::Ictr:rl‘::;:::‘:/eloclly
m 25 25
%: 20 % 2.0
. U nﬂﬂ nﬂ“ﬂﬂﬂﬂ :
VVvaVUVUVU U V V
E ’ 0.5
E ’ "’ ‘?'?“ESWT“D @) ;) B 26 28 30 32 34 36
Lateral deviation vs. Timestamp of NDI Landing Timestamp (s)
Touch down speed = 2.13 m/s (23 cm
drop above ground
_/ P EraUne)
5 Touch down tilt = 9 degrees
! Attitude stabilization =2.46 s
Lateral deviation = 1.6 m
i 2 B 27 Bl E) B B
In terms of the touchdown speed, Feedback Linearisation is able to dominate the other controllers.
However, MRFTC performs better than others in the other metrics for landing. However, with the
given analogies of free-falling objects, none of the strategies compromises the safety of the drone.
Hover
i Attitude Angles vs. Position vs. Timestamp
i — W1 =1 T T T T
i 003 ::: Eam: I:z;‘:‘;m\(smb\e hover) WWMW L 5
0.00 ———— ——t i
H E Iz=ault Injected
10 ===——— Altitude Control(Stable hover) —
@) 010 WWM ------ Position hold
H 05 g
m -0.15 o : T ———
m 30 32 34 r..r::zm © 38 40 42 H
E P 30 32 34 nm:!amp(s) 38 40 42
Yaw rate vs. Ti
— yaW rate
150 === Faultinjected
- Allin.ine Control(Stable hover) . . .
s Attitude stabilization =0.75 s
(N Z offset = 0.1 m (upwards)
Lateral offset = 0.13 m
E
Position hold time =4 s
Position hold deviation = 1.3 m
30 32 34 Timestamp (6 38 40 42

Timestamp (s)

28 30

-
:' Attitude Angles vs. Ti Position vs. Timestamp
E o E e phi 4
i i e theta
i 030 H = mm Fault Injected
i i = mm Altitude Control(Stable hover)
i 025 : = == Position hold W |
H i - L
1 1
1 = 0.20 T -
1 E E
/ \ = 52
E 0.15 g
< H
010 T
1 —— X
0.05 /’— :
'M \/ Fault Injected
000 0 —_— S e Altitude Control(Stable hover)
o ! ! -7 T~ e Position hold
S Timestamp (s) 15 20 25 30 35 40
Timestamp (s)
"U Yaw rate vs. Timestamp
9}
[P] /__W/ B e
m 15.0
Attitude stabilization =1.5s
w0 Z offset = 1 m (downwards)
]
e
_ J i Lateral offset =1 m
H
Position hold time =9 s
e Yaw rate i . .
= Atitude Control (Stable Hover) Position hold deviation =4.2 m
== == = Fault Injected
wm wm m Position Hold
0.0
15 20 25 30 35 40
Timestamp (s)
\\
-
Attitude Angles vs. Timestamp Position vs. Timestamp
034 — pni i ! 1
— theta ! 10 -————-——_: —
=== Fault Induced 1
021 ——- Attitude Control(Stable Hover) i
~~ Position Hold 8
0.1
6 —_—x
g 0.0 ‘é‘ —y
° H =2
S o1 2, --- Fault Induced
< & === Attitude Control(Stable Hover)
~~ Position Hold
/ \ -0.2 4
1 2
| H
-0.3 1 |
]]
1 0 :
-0.4 ! ¥_L___________,_'————
1 0
H » 2 2 ﬁmestz:mp (s) 26 B * 18 20 22 24 26 28 30
Q Timestamp (s)
Yaw rate vs. Timestamp
Z 3 e I
=== Fault Ind d
! w2 e ‘::f:\!rol(stahle Hover) MWNY\/\WNW
~- Position Hold 1 - ITH -
n : Attitude stabilization = 1.86 s
‘
o ; Z offset = 0.1 m (upwards)
3 !
3 !
— o ; Lateral offset = 0.35m
= i g .
s ! Position hold time = 1.98 s
4 : ang A0
; Position hold deviation = 1.35 m
2
!
0
18 20 22 24 26

11

MRFTC has the best attitude stabilization response, however INDI is able to achieve position hold in
a short time, with a slightly worse position hold distance. All of the strategies achieve hover with ease

12

Return to home (RTH)

a N\
Position vs. Timestamp
- Velocity vs. Timestamp
L L - -
=i
10 — T ™ 04 -
8 A: 02 -
6 3 0.0 =
£ i 2 | i
é x 3 g 02 VX : 1
N 2. —y i g E i
z ; 2 v ! :
o A /] Fault Induced ' 04 o f =m=== Fault Induced H H
. i 1 i
----- Altitude Stabilized] 1 = === Altitude Stabilized ! ! !
i 1 | i i
vy oA | |- Home Reached in XY ! 05 H ==== Home Reached in XY H ; i
o i i i i
U o \/ _____ Land Sequence Initiated ' ! ~ === Land Sequence Initiated ' i i
P" ----- Landed at Home ! 08 o | —~==- Landed at Home : : i
& 1 1) L L 5 ; ; : '
m ! e k ‘Timesvamp (s)‘ k 1 10 1t 1% %) 1) = w
o Timestamp (s)
m Velocity vs. Timestamp
S| — ;
' === Fault Induced |
— === Attitude Stabilized i
) 10 ==« Home Reached in XY ; RTH time =60 s
=~ Land Sequence Initiated ! -
o ———. Landed at Home : Stable height = 10.5 m (after 2 s)
E o054 H Y
z i i
g : | Lateral speed = 0.25 m/s (stable)
s i :
0.0 ¥ A.
L ' |
-05 m T i
To % % %o % 5 %
Timestamp (s)
», -
I’ ~‘
Position vs. Ti Velocity vs. Timestamp
12 N i 15 ‘ i B — ‘vx
. L N T TV e o e R Fault Induced
B e e e Ry [N L | | | S e E (U Altitude Stabilized
. S 5 s R e A 1 Y L L [I B Home Reached in XY
L N e a2 T D U T T R I A O S A (L T 7] T N S I — Land Sequence Initiated
—_— i g 0.5 | | AL A S Ry [Landed at Home
—=== Fault Induced / i z
-~ Alitude Stabilized i g
——-~ HomeReachedin XY =4 i 2 o
== Land Sequence Initiated i
/__\ === Landed at Home
0 -0.5 :
i
i
. / |
i
-1.0 :
20 30 40 50 60 70 80 il

Timestamp (s) 20 30 40 Tso o 60 70 80
imestamp (s

Velocity vs. Timestamp

08
—_—VZ

_____ Fault Induced

wm== Attitude Stabilized

~ Home Reached in XY

- Land Sequence Initiated
N [Landed at Home

Feedback

06

RTH time =30 s
m Stable height = 7 m (after 13 s)
Lateral speed = 1.1 m/s (varying)

-
N

Velocity (m/s)

°
9

20 30 40 50 60 70 80
Timestamp (s)

13

0y
Velocity vs. Ti Position vs. Timestamp
T 175
s H = | E— —x
=== Fault Induced -y
=== Altitude Stabilized 15.0 it 4
=== Home Reached in XY = ;a‘(u:‘l“\’nd::esl |
~- Landing Sequence Initiated itude Stabilize

125 -~ Home Reached in XY
1 ~-- Landing Sequence Initiated

e ! --- Landed at Home
100 N\ — —

6 t === Landed at Home

= s
2t g
g]
/—\ H N e
2
25
00 —
0 ———f\ \/"J—W/f\/ -
215 220 225 230 235 240 2a5

- Timestamp (s)
215 220 225 230 235 240 245
Timestamp (s)

Velocity vs. Timestamp

— w
! —w
1o ! -=- Fault Induced
H ~=- Altitude Stabilized
~-- Home Reached in XY
05

-~ Landing S Initiated RTHt- _18
. ime =18 s

Stable height = 10 m (after 4s)
Lateral speed = 2.3 m/s (varying)
215 220 225 an:S(:amp © : 235 240 245
INDI reaches its goal the fastest, while MRFTC is able to achieve stabilization the fastest. It is also
seen that throughout the path, INDI and MRFTC have minimal deviation in height and z velocity

E Tilt angle vs. i § Position vs. Timestamp

i 2 i 1 ; o Ll

E - i 0 N —

7 \ ,g)s E o

H F 10 -10

o —

N 15—y

“ ’ \ : :a It Induced —
E =20 1 -~ At:llude Stabilized

_; . N - o I\.:::;equen:e Initiated

w 30 40 50 7 80 % =) 40 50 60 70 80 %
m Timestamp (s) Timestamp (s)

+ Yaw rate vs. Timestamp i

o] It PN et Attitude Stabiliization: 2 s
E - Land Time: 13 s

i | Yaw rate mean: 14.5 rad/s
\,—/ 5 Yaw rate deviation: 0.5 rad/s

. e Tilt angle mean: 10 degrees

: e Tilt angle deviation: 4.5 degrees

i 30 40 50 nmes“rs:p “ 70 80 90

The controller stabilizes the yaw rate and height with minimal deviation using data from the estimator.
However, an increase in tilt angle occurs due to a noisy attitude channel. The system demonstrates
Lyapunov stability, as evidenced by the drone's lateral position being confined within a bound around
its initial position, rather than exhibiting asymptotic stability.

14

Double Motor failure in MRFTC controller

(i 2
) (MRFTC-RTH | .

Tilt angle vs. Timestamp

— Tilt | | Yaw rate vs. Timestamp
i i T T T
-=- First Fault Induced i ! 1 i H
Second Fault Induced i
== RTH Started 1 25
Home reached in XY

-~ Land Sequence Initiated
-~ Home Reached

Tilt angle (deg)

Yaw rate (rad/s)

— yaw rate

! ~=~ First Fault Induced
5 ! Second Fault Induced
~=- RTH Started

Home reached in XY
--- Land Sequence Initiated
~=-- Home Reached —

H
60 80 100 120 140 0 — !
Timestamp (s) H

60 80 100 120 140
Timestamp (s)
Position vs. Timestamp

10 \.MWMW'

Tilt after failure 1: 5 degrees

Tilt after failure 2: 0 degrees

Yaw rate after failure 1: 17 rad/s
Yaw rate after failure 2: 27 rad/s
Slight increase in height deviation

—x
—
61—z
-=- First Fault Induced
Second Fault Induced
-- RTH Started
Home reached in XY
--- Land Sequence Initiated
-=- Home Reached

Position(m)

H
60 80 100 120 140
Timestamp (s)

Quan Quan can maintain full control and stability even with two opposing motor failures by
directly incorporating the faulty motors into its dynamic model

We induce a second motor failure after the drone stabilizes from an initial single-motor failure,
demonstrating the controller's ability to maintain stability under double-motor failure conditions

The drone's tilt angle reduces from an initial 5 degrees to 0 degrees during hover, indicating
stability. While a single motor failure results in a non-zero tilt due to unbalanced torques, an
opposite double-motor failure scenario can balance the torques, leading to a zero or near-zero tilt

angle. We also note a sudden increase in the yaw rate for the same reason - more net torque in
the same direction

. Quan Quan maintains a stable height with minimal vertical velocity, though the variance is higher
compared to the single-motor failure case.

. The drone maintains stability even during lateral movement. A slight increase in tilt angle is

observed, which is essential for aligning the drone's orientation with the desired direction of
movement.

Introduction \ Building up \ Final Solution\ System Setup \ Results \ Conclusion

Conclusion

Challenges

The asymmetric geometry of IRIS
complicates modelling, frame transformations
and control formulations

High yaw rate post failure causes centrifugal
forces on onboard sensors leading to
inaccurate state estimation

Accurate estimation of quadrotor parameters
such as Moment of Inertia for actual hardware.
The latency and noise coming from actual
sensors need to be modelled

Most fault detection methods mentioned in
literature were computationally demanding
and slower response times making them
unsuitable for the task

Most control algorithms mentioned in literature
developed separate algorithms for pre-failure

15

Solutions

Accurate mathematical models developed for
modelling thrusts and torques of the quadrotor

PX4's default estimator was tuned to reduce
noise in the estimates. In addition, GPS and
Q-attitude estimator was used to provide
accurate altitude and attitude estimates

Model parameters estimated using approximate
methods and experimentation on indigenous
setup. Latency and noise modelled using post
failure data from log files of actual hardware

Innovative low-cost and low latency fault
detection methods were devised through
meticulous data analysis, enabling accurate
failure prediction even in extreme environments

A uniform passive fault tolerant controller was
developed with augmented states dependent

on motor health allowing the control algorithm to
switch passively to failure mode as soon as
failure is detected

and post-failure cases requiring explicit
runtime switching of control algorithms based
on failure detection

Future Scope and Recommendations

The Extended Kalman Filter (EKF) showed high-frequency variations in its state estimates that did not
match the ground truth, likely caused by noise being amplified during the filter's updates. These variations
can reduce the accuracy of state estimation, affecting tasks like control and navigation. To fix this, low-pass
filters can be used to smooth the estimates by removing unnecessary high-frequency noise while keeping
the important data. Careful tuning of these filters is needed to ensure they remove noise effectively without
slowing down the system's response to changes.

Wind disturbances were not considered in the initial analysis, limiting the understanding of their effects on
the quadrotor. Simulations showed that the quadrotor remained stable with slight drifting under low-
magnitude winds. However, as wind strength increased, the control algorithm became unstable. This
instability occurs because stronger winds create forces that the control system struggles to compensate for.
These results highlight the need for more robust control strategies to handle wind disturbances and ensure
stable flight in challenging conditions. Future development should focus on improving wind disturbance
handling in both simulations and real-world tests.

A user interface has also been developed to enable users to input all control commands seamlessly,
providing an intuitive and efficient way to interact with the system. This interface functions as an abstraction
layer, allowing for easy integration with existing quadrotor systems. As a result, the solution can be
deployed as a software update, making it possible to enhance the functionality of current systems without
the need for significant hardware modifications.

Introduction \ Building up \ Final Solution \ System Setup \ Results \ Conclusion

Appendix
Hardware Testing

A 15x20 ft bamboo pole structure was constructed to
serve as a stable testing frame for the drone. This rig
provided a secure platform for conducting tests under
controlled conditions, particularly useful in windy or
unstable environments. The setup allowed us to test
various controllers and flight systems while keeping the
drone tethered and protected. To prevent the drone
from falling directly to the ground during testing, a rope
was used to secure it to the rig. This rope not only
ensured that the drone remained attached but also
allowed us to manually adjust the tension during takeoff
to avoid slack and maintain stability. Additionally, the rig
enabled us to fine-tune the drone’s performance,
calibrate control inputs, and optimize flight behavior, all
without the risk of crashing. To further ensure safety,
mattresses were placed around the testing area to
cushion any hard landings and protect the drone from
potential damage. The combination of the stable rig,
manual rope tensioning, and crash protection allowed
for safe and efficient testing, ensuring that adjustments
could be made and reliable data gathered without
compromising the integrity of the drone.

Hardware Setup

etup for outdoor testing

16

Fig. 9 Holybro S500 drone

Relay Switch

Propeller

Guard

e

To allow yawing motion, a BLDC motor was used as
a bearing for free rotation around the attachment
point between the rope and the drone.

A relay switch was placed between the motor and
the ESC, controlled via the transmitter. The relay
acted as an interrupter in the PWM signal
transmission, enabling us to simulate a failure by
cutting the signal and effectively disabling the motor.
Powered directly through the receiver, the relay
allowed for precise control over when the fault was
triggered. This setup provided the flexibility to inject
faults at specific intervals during flight, giving us an
effective way to test the drone’s response to motor
failure and recovery mechanisms.

Additionally, propeller guards were installed to
prevent damage to the propellers and enhance the
safety of both the drone and the people around it.
These guards helped protect the propellers from
chipping during tests, ensuring that the drone
remained in optimal working condition and reducing
the risk of injury or damage during flight operations.

Appendix

IRIS Parameters

Mass 1.5 kg (1.535 considering total)
S ke 0029125kt
lyy 0.029125 kg-m?
I
L1 0.2m
=B | 0w
Motor Constant 5.84*10° kg-m
BT
Max Rotor Angular Velocity 1100 rpm

S500 Parameters

Mass 1.5 kg
S e 00dkgm®
lyy 0.04 kg-m?
= o=
Arm Length 0.29 m
WOl | Gy
Moment Constant 0.07

18
Appendix

Motor Fault Detection

True Count

> Window
/ No fault Size \

| False

Actuator

Outputs Compute Condition 1 True Condition 2 False S
— " AR). (B _— -
D) By} ARy Couwnt=0 ()
False True
<e> - Moving Average
No fault Faultin

Motor i

Fig. 10 Flowchart for Motor Fault Detection Algorithm (AFDFD)

-- Roll Pitch Yaw

0.41863 7.1560709 6.4346025 5.1371968
0.370917 8.5753447 9.9259208 6.855554
0.135748 1.2527149 0.9487608 1.2527149
0.445711 1.7053515 1.9341336 1.5033839

1
2
3
4

19
Appendix

Fault Detection Results in Hardware

- Hardware Latency

0.005

0.004

0.003 4

Density

0.002 4

0.001 A

0.000

) 100 200 300 400 500 600
Value

Distribution of Motor Fault Detection Latency on hardware

Motor number is detected correctly in case of throttle up which is evident
by increasing motor outputs.

Motor number is detected correctly in case of yaw movement which is
evident by increasing output of two rotors and decreasing for other two

System Setup

Moment of Inertia Approximation

7|5
1|1 A

6I4I!

5.5"

~

Fig.8 Schematic of setup for experimental calculation of inertias

20

For hardware testing, we needed to determine the moment of inertia of the S500 V2 drone as these
parameters were necessary for controller tuning in SITL before applying them in hardware. Given above is
the experimental setup that was used. The drone was suspended by 4 strings attached to its stands. It was
then allowed to execute small oscillations about its mean position and the time period of oscillations were

noted.
In order to calculate of moment of inertia from time period, a mathematical model was developed.

Force Equation along X - direction : Ty siny;, + Ty sinye = m(ra) cos ©
Force Equation along Y - direction : mg — Ty cosy, — Ty cos vy = m(ra) sin®
Force Equation about F : (Tysiny,)h + mg (:1: s %) — (T cos) <% +z+ g) =l
For I,, ifwehave: a=1" b=55" h="12" m=15kg, g=29.8lms’
Substituting these values into the equations of the model and solving for (v and § we get,
. —=7.5141
“ = 0.22861 + 0.694
This is similar to the equation of SHM
Angular rate of oscillation : W= GO
0.22861 + 0.694
2.8701
:> I = 9 8270 — 3.0359 here, I = ICM + mr2
w
Using the above expression we calculated the values of moment of Inertia experimentally.
Small angle approximation : ' B ozt g . r+2-2
sm’yl—tan’yl—’yl— A , SIH’YQ:tELH")/QZ’)Q: b
h
Siﬂ@ztan@:G:% and T:cos@:h

References

[1]
Zhong, Y., Zhang, Y., Zhang, W., Zuo, J. and Zhan, H., 2018. Robust actuator fault detection and
diagnosis for a quadrotor UAV with external disturbances. IEEE Access, 6, pp.48169-48180.

[2]
Lanzon, A., Freddi, A. and Longhi, S., 2014. Flight control of a quadrotor vehicle subsequent to a rotor
failure. Journal of Guidance, Control, and Dynamics, 37(2), pp.580-591.

[3]
Lippiello, V., Ruggiero, F. and Serra, D., 2014, October. Emergency landing for a quadrotor in case of a
propeller failure: A PID based approach. In 2014 IEEE International Symposium on Safety, Security, and
Rescue Robotics (2014) (pp. 1-7). IEEE.

[4]
Mueller, M.\W. and D'Andrea, R., 2014, May. Stability and control of a quadrocopter despite the complete
loss of one, two, or three propellers. In 2014 IEEE international conference on robotics and automation
(ICRA) (pp. 45-52). IEEE.

[5]
Ahmadi, K., Asadi, D., Nabavi-Chashmi, S.Y. and Tutsoy, O., 2023. Modified adaptive discrete-time
incremental nonlinear dynamic inversion control for quad-rotors in the presence of motor faults.
Mechanical Systems and Signal Processing, 188, p.109989.

[6]
Ke, C., Cai, K.Y. and Quan, Q., 2023. Uniform passive fault-tolerant control of a quadcopter with one,
two, or three rotor failure. IEEE Transactions on Robotics.

[7]
Beyer, Y., Steen, M. and Hecker, P., 2023. Incremental passive fault-tolerant control for quadrotors
subjected to complete rotor failures. Journal of Guidance, Control, and Dynamics, 46(10), pp.2033-2042.

